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Čerenkov Effect With Massive Photons
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The equations of massive electrodynamics are derived and the power spectrum formula
for the Čerenkov radiation of massive photons is found. It is argued that the massive
Čerenkov effect can be observed in superconductive media, ionosphere plasma, wave-
guides, and in particle laboratories.
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1. INTRODUCTION

The possibility that photon may be a massive particle has been treated by
many physicists. At the present time great attention is devoted to discussion of
the mass of the neutrino and its oscillations; nevertheless, the theoretical problems
with massive photons are of the same importance. The established fact is that mas-
sive electrodynamics is a perfectly consistent classical and quantum field theory
(Feldman and Mathews, 1963; Goldhaber and Nieto, 1971; Minkowski and Seiler,
1971). In all respect the quantum version has the same status as the standard QED
with massless photons. In this paper we do not solve the radiative problems in
sense of Nieuwenhuizen (1973); our goal is to determine theČerenkov effect of
massive photons which is not analyzed in that paper.

In particle physics and quantum field theory (Commins and Bucksbaum 1983;
Ryder, 1985; de Wit and Smith, 1986) the photon is defined as a massless particle
with spin 1. Its spin is along or in opposite direction to its motion. The massive
photon as a neutral massive particle is usually called vector boson. There are other
well-known examples of massive spin 1 particles, for instance, neutral%-meson,
ϕ-meson,J/ψ particle, and bosonsW± andZ0 in particle physics.

While the massless photon is described by the Maxwell lagrangian, the mas-
sive photon is described by the Proca lagrangian, from which the field equations
follow. Massive electrodynamics can be considered as a generalization of massless
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electrodynamics. Well-known areas where the massive photon or boson play a
substantial role are superconductivity (Ryder, 1985), plasma physics (Anderson,
1963), waveguides, and so on. So, the physics of the massive photon is meaning-
ful and this means that thěCerenkov effect with massive photons is also worth
investigating.

In order to be pedagogically clear, in Section 2 we treat the massive spin
0 quantum field theory and then in Section 3 the massive spin 1 field theory. In
Section 4 the massive Maxwell equations are derived. In that section a power
spectral formula is derived for the massiveČerenkov radiation for the case of one
charge moving in a medium.

2. MASSIVE SPIN 0 FIELDS

We begin with the massive spin 0 field as the most simple illustration of how
source theory works (Schwinger, 1970). The action of spin 0 particles is according
to source theory composed from the scalar sourceK (x) and propagator1+ in
such a way that it gives the correct probability condition for the vacuum to vacuum
amplitude. We show here that the action is

W(K ) = 1

2

∫
(dx)(dx′)K (x)1+(x − x′)K (x′), (1)

and gives the right probability condition|〈0+ | 0−〉|2 ≤ 1 (Schwinger, 1970;
Schwingeret al., 1976), where (h = 1)

〈0+ | 0−〉K = eiW(K ) (2)

is the basic formula of the Schwinger source theory, with〈0+ | 0−〉 being the
vacuum to vacuum amplitude.

In order to prove that the quantity〈0+ | 0−〉 is really the vacuum to vac-
uum amplitude it is necessary to know the explicit form of the Green function
1+(x − x′) which satisfies the equation

(−∂2+m2)1+(x − x′) = δ(x − x′). (3)

From the last equation it follows that

1+(x − x′) = 1

(−∂2+m2)

∫
(dp)

(2π )4
eip(x−x′). (4)

The formula (4) is not unambiguous and it is necessary to specify it by the
ε-term, or

1+(x − x′) =
∫

(dp)

(2π )4

eip(x−x′)

p2+m2− i ε
; ε→ 0+. (5)
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Now, let us prove that|〈0+ | 0−〉|2 is the probability of the persistence of
vacuum. According to definition

〈0+ | 0−〉 = exp

{
i

2

∫
(dx)(dx′)K (x)1+(x − x′)K (x′)

}
, (6)

we have

〈0+ | 0−〉 = exp

{
i

2

∫
(dx)(dx′)

∫
(dp)

(2π )4
K (x)

eip(x−x′)

p2+m2− i ε
K (x′)

}

= exp

{
i

2

∫
(dp)

(2π )4

K (p)K (−p)

p2+m2− i ε

}
= exp

{
i

2

∫
(dp)

(2π )4

|K (p)|2
p2+m2− i ε

}
(7)

as a consequence of Eq. (5) andK ∗(p) = K (−p). Using the well-known theorem

1

x − i ε
= P

(
1

x

)
+ iπδ(x); ε→ 0, (8)

whereP denotes the principal value of integral, we get the following formula for
the vacuum persistence:

|〈0+ | 0−〉|2 = e−2 ImW = exp

{
−2

∫
(dp)

(2π )4
π |K (p)|2δ(p2+m2)

}
. (9)

Using

δ(p2+m2) = 1

2(p2+m2)1/2

{
δ
(
p0− (p2+m2)1/2

)
+ δ(p0+ (p2+m2)1/2

)}
, (10)

we get

2
∫

(dp)

(2π )4
π |K (p)|2δ(p2+m2) =

∫
(dp)

(2π )3

1

2p0
|K (p0, p)|2, (11)

and then,

|〈0+ | 0−〉|2 = exp

{
−
∫

dωp|K (p)|2
}

, (12)

where

dωp = (dp)

(2π )3

1

2p0
p0 = +(p2+m2)1/2. (13)

The expression (12) shows that in the presence of the scalar sourceK (x) the
probability for vacuum to remain a vacuum is equal to or less than 1.
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Now, let us show the derivation of the field equation from the actionW for
the scalar fieldϕ, where

W = 1

2

∫
K1+K = 1

2

∫
ϕK = 1

2

∫
ϕ(−∂2+m2)ϕ

= 1

2

∫
(∂µϕ∂

µϕ +m2ϕ2) = 2W −W

=
∫
ϕK − 1

2
[(∂ϕ)2+m2ϕ2] =

∫
(dx)[K (x)ϕ(x)+ L(ϕ(x))] (14)

with

L(ϕ(x)) = −1

2
[∂µϕ∂

µϕ +m2ϕ2]. (15)

Let us put

δϕW = 0, (16)

or ∫
δϕK − [∂µϕ∂

µδϕ +m2ϕδϕ] = 0. (17)

After some modification we get∫
(dx)[K − (−∂µ∂µϕ +m2ϕ)]δϕ = 0. (18)

As variableϕ is an arbitrary one the last integral is equal to zero only if

(−∂2+m2)ϕ(x) = K (x), (19)

which is the Klein–Gordon equation with sourceK (x) on the right side of equation.
Now, let us derive the Proca equation for massive particles with spin 1 and generate
the Maxwell equations for massive photons.

3. MASSIVE SPIN 1 FIELDS

We show the natural construction of the field of the particles with spin 1. The
derivation of the action for this massive spin 1 fields is based on the modification
of the derivation of spin 0 fields.

The relation

|〈0+ | 0−〉2 = exp{−2 Im W} ≤ 1 (20)

is postulated to be valid for all spin fields. Let us show here the construction of
action and field equations concerning spin 1.
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If spin 0 particles and fields are described by the scalar source, then a vector
source denoted here asJµ(x) can be considered as a candidate for the description of
the spin 1 fields and particles. However, there exist some obstacles because source
Jµ(x) has four components and spin 1 particles have only three spin possibilities.
Nevertheless, first let us investigate by analogy with the spin 0 fields the following
form of the action for the unit spin fields:

W(J) = 1

2

∫
(dx)(dx′)Jµ(x)1+(x − x′)Jµ(x′). (21)

Then,

|〈0+ | 0−〉|2 = eiW e−iW∗ = exp

{
−
∫

dωp J∗µ(p)Jµ(p)

}
. (22)

However,

J∗µ(p)Jµ(p) = |J(p)|2− |J0(p)|2 ≤ 0 or > 0, (23)

and it means that the quantity defined by Eq. (21) cannot be considered as the
probability of the persistence of vacuum.

The difficulty can be overcome by replacing the original formJ∗µ(x)Jµ(x)
by the following invariant structure:

J∗µ(p)

[
gµν + 1

m2
pµpν

]
Jν(p), (24)

which can be, with regard to its invariancy, determined in the rest frame of the
timelike vectorpµ, wherepµ = (m, 0, 0, 0) in the rest frame. Then, withgαα =
(−1, 1, 1, 1) andgµν = 0 forµ 6= ν, we have

ḡµν = gµν + 1

m2
pµpν =


δkl ; µ = k; ν = l

0; µ = 0; ν = 0
0; µ = k; ν = 0

(25)

and

J∗µ(p)ḡµν Jν(p) ≡ |J|2, (26)

and now the quantity|〈0+ | 0−〉|2 can be interpreted as the vacuum persistence
probability.

At the same time|J|2 contains three independent source components, trans-
forming among themselves under spatial rotation, as it is appropriate to unit spin.

After using Eq. (24) it may be easy to getW(J) in the space-time represen-
tation by the Fourier transformation, as follows:

W(J) = 1

2

∫
(dx)(dx′)

{
Jµ(x)1+(x − x′)Jµ(x′)

+ 1

m2
∂µJµ(x)1+(x − x′)∂ ′ν Jν(x′)

}
. (27)
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The field of spin 1 particles can be defined using the definition of the test
sourceδJµ(x) by the relation

δW(J) =
∫

(dx)δJµ(x)ϕµ(x), (28)

whereϕµ is the field of particles with spin 1. After performing variation of the
formula (27) and comparison with Eq. (28) we get the equation for field of spin 1
in the following form:

ϕµ(x) =
∫

(dx′)1+(x − x′)Jµ(x′)− 1

m2
∂µ

∫
(dx′)1+(x − x′)∂ ′ν Jν(x′). (29)

The divergence of the vector fieldϕµ(x) is given by the relation

∂µϕ
µ(x) =

∫
(dx′)1+(x − x′)∂ ′µJµ(x′)− 1

m2
∂2
∫

(dx′)1+(x − x′)∂ ′ν Jν(x′)

= 1

m2
∂µJµ(x), (30)

as a consequence of Eq. (3) or

−∂21+ = δ(x − x′)−m21+. (31)

Further, after applying operator (−∂2+m2) on Eq. (29) we have the following
equations:

(−∂2+m2)ϕµ(x) = Jµ(x)− 1

m2
∂µ∂ν Jν(x), (32)

(−∂2+m2)ϕµ(x)+ ∂µ∂νϕν(x) = Jµ(x), (33)

as a consequence of Eq. (30).
It may be easy to cast the last equation into the following form:

∂νGµν +m2ϕµ = Jµ, (34)

where

Gµν(x) = −Gνµ(x) = ∂µϕν − ∂νϕµ. (35)

Identifying Gµν with Fµν of the electromagnetic field we get instead of
Eqs. (33) and (34) the so-called Proca equation for the electromagnetic field with
the massive photon:

(−∂2+m2)Aµ(x)+ ∂µ∂νAν(x) = Jµ(x), (36)

∂νFµν +m2Aµ = Jµ, (37)

Fµν(x) = −Fνµ(x) = ∂µAν − ∂νAµ. (38)
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In casem2 6= 0, we can put∂µAµ = 0 to get

(−∂2+m2)Aµ(x) = 0, ∂µAµ = 0. (39)

The solution of the system (39) is the plane wave

Aµ = εµ(k)eikx, k2 = −m2, (40)

with kε(k) = 0, which is precisely the correct definition of a massive particle with
spin 1. We will see in the next section how to generalize this procedure to the
situation of the massive electrodynamics in dielectric and magnetic media and
then to apply it in the determination of the massiveČerenkov radiation.

Equation (34) can also be derived from the action

W =
∫

(dx)(Jµ(x)ϕµ(x)+ L(ϕ(x))), (41)

where

L = −1

2

(
1

2
(∂µϕν − ∂νϕµ)(∂µϕν − ∂νϕµ)+m2ϕµϕµ

)
, (42)

where we have used the arrangement∫
(dx)ϕµ(−∂2)ϕµ =

∫
(dx)∂νϕµ∂νϕµ (43)

and ∫
(dx)ϕµ∂µ∂

νϕν = −
∫

(dx)ϕν∂µ∂µϕν = −
∫

(dx)ϕµ∂
µ∂νϕν. (44)

Using the last equation (44) we get the lagrange function in the following
standard form:

L = −1

2
(∂νϕµ∂νϕµ − (∂µϕ

µ)2+m2ϕµϕµ). (45)

If we use theA- andF-symbols, we receive from Eq. (42) the Proca lagrangian

L = −1

2

(
1

2
FµνFµν +m2AµAµ

)
, (46)

or

L = −1

2
(∂νAµ∂νAµ − (∂µAµ)2+m2AµAµ). (47)

By variation of the corresponding lagrangians for the massive field with spin
1, we get evidently the massive Maxwell equations.

It is evident that the zero mass limit does not exist for∂µJµ(x) 6= 0. Thus,
we are forced to redefine actionW(J). One of the possibilities is to put

∂µJµ(x) = mK(x) (48)
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and identifyK (x) in the limit m→ 0 with the source of massless spin 0 particles.
Since the zero mass particles with zero spin are experimentally unknown in any
event, we takeK (x) = 0 and we write

W[m=0](J) = 1

2

∫
(dx)(dx′)Jµ(x)D+(x − x′)Jµ(x′), (49)

where

∂µJµ(x) = 0 (50)

and

D+(x − x′) = 1+(x − x′; m= 0). (51)

In case we want to work with electrodynamics in a medium it is necessary to
involve such parameters as velocity of light,c, magnetic permeabilityµ, and the
dielectric constantε. Then the corresponding equations for electromagnetic poten-
tials which are compatible with the Maxwell equations are as follows (Schwinger
et al., 1976): (

1− µε
c2

∂2

∂t2

)
Aµ = µ

c

(
gµν + n2− 1

n2
ηµην

)
Jν , (52)

where the corresponding Lorentz gauge is defined in Schwingeret al. (1976) in
the following form:

∂µAµ − (µε − 1)(η∂)(ηA) = 0, (53)

whereηµ = (1, 0) is the unit timelike vector in the rest frame of the medium. The
four potentials areAµ = (φ, A) and the four currents areJµ = (c%, J); n is the
index of refraction of this medium.

The corresponding Green functionDµν
+ in thex-representation is

Dµν
+ (x − x′) = µ

c

(
gµν + n2− 1

n2
ηµην

)
D+(x − x′). (54)

D+(x − x′) was derived by Schwingeret al. (1976) as follows:

D+(x − x′) =
∫

(dk)

(2π )4

eik(x−x′)

|k2| − n2(k0)2− i ε
, (55)

or

D+(x − x′) = i

c

1

4π2

∫ ∞
0

dω
sin nω

c |x− x′|
|x− x′| e−iω|t−t ′|. (56)
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4. MASSIVE PHOTON IN ELECTRODYNAMICS
AND THE ČERENKOV EFFECT

The massive electrodynamics in a medium can be constructed by generaliza-
tion of massless electrodynamics to the case with massive photon. In our case it
means that we replace only Eq. (52) by the following one:

(
1− µε

c2

∂2

∂t2
+ m2c2

h2

)
Aµ = µ

c

(
gµν + n2− 1

n2
ηµην

)
Jν , (57)

wherem is mass of photon. The Lorentz gauge (53) is also conserved in the massive
situation.

In superconductivity, photon is a massive spin 1 particle as a consequence
of a broken symmetry of the Landau–Ginzburg lagrangian. The Meissner effect
can be used as a experimental demonstration that photon in a superconductor is
a massive particle. In particle physics the situation is analogous to the situation
in superconductivity. The masses of particles are also generated by the broken
symmetry or, in other words, by the Higgs mechanism. Massive particles with
spin 1 form the analogue of the massive photon.

Kirzhnitz and Linde proposed a qualitative analysis wherein they indicated
that, as in the Ginzburg–Landau theory of superconductivity, the Meissner effect
can also be realized in the Weinberg model. Later, it was shown that the Meissner
effect is realizable in renormalizable gauge fields and also in the Weinberg model
(Kirzhnitz and Linde 1972; Yildiz, 1977).

We concentrate in this paper on theČerenkov radiation with massive photons.
The so-calleďCerenkov radiation was observed experimentally first byČerenkov
(1934) and explained theoretically by Tamm and Frank (1937) in classical elec-
trodynamics as a shock wave resulting from a charged particle moving through a
material faster than the velocity of light in the material. The source theory expla-
nation was given by Schwingeret al. (1976) and the particle production by the
Čerenkov mechanism was discussed by Pardy (1983a,b). TheČerenkov effect at
finite temperature in source theory was discussed by Pardy (1989, 1995) and the
Čerenkov effect with radiative corrections in electromagnetism and gravity was
analyzed by Pardy (1994a,b).

We will investigate how the spectrum of theČerenkov radiation is modified
if we suppose that the massive photons are generated instead of massless photons.
The derived results form an analogue of the situation with massless photons.
According to Pardy (1989; 1994a,b; 1995) and Dittrich (1978) with the analogy
of the massless photon propagatorD(k) in the momentum representation

D(k) = 1

|k|2− n2(k0)2− i ε
, (58)
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the massive photon propagator is of the form (here we introduceh andc)

D(k, m2) = 1

|k|2− n2(k0)2+ m2c2

h2 − i ε
, (59)

where this propagator is derived from an assumption that the photon energetical
equation is

|k|2− n2(k0)2 = −m2c2

h2 , (60)

wheren is the parameter of the medium andm is mass of photon in this medium.
From Eq. (60) the dispersion law for the massive photons follows:

ω = c

n

√
k2+ m2c2

h2 . (61)

Let us remark here that such dispersion law is valid not only for the massive
photon but also for electromagnetic field in waveguides and electromagnetic field
in ionosphere. It means that the corresponding photons are also massive and the
theory of massive photons is physically meaningful. This means that theČerenkov
radiation of massive photons is also physically meaningful and it is worthwhile to
study it.

The validity of Eq. (60) can be verified using very simple idea that forn = 1
the Einstein equation for mass and energy has to follow. Puttingp = hk, hk0 =
h(ω/c) = E/c, we get the Einstein energetical equation

E2 = p2c2+m2c4. (62)

The propagator for the massive photon is then derived as

D+(x − x′, m2) = i

c

1

4π2

∫ ∞
0

dω
sin
[

n2ω2

c2 − m2c2

h2

]1/2|x− x′|
|x− x′| e−iω|t−t ′|. (63)

The function (63) differs from the the original functionD+ by the factor(
ω2n2

c2
− m2c2

h2

)1/2

. (64)

From Eqs. (56) and (63) the potentials generated by the massless and mas-
sive photons respectively follow. In case of the massless photon, the potential is
according to Schwinger defined by the formula:

V(x− x′) =
∫ ∞
−∞

dτ D+(x− x′, τ )

=
∫ ∞
−∞

dτ

{
i

c

1

4π2

∫ ∞
0

dω
sin nω

c |x− x′|
|x− x′| e−iω|τ |

}
. (65)
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Theτ -integral can be evaluated using the mathematical formula∫ ∞
−∞

dτ e−iω|τ | = 2

iω
(66)

and theω-integral can be evaluated using the formula∫ ∞
0

sinax

x
dx = π

2
, for a > 0. (67)

After using Eqs. (66) and (67), we get

V(x− x′) = 1

c

1

4π

1

|x− x′| . (68)

In case of the massive photon, the mathematical determination of potential is
analogical to the massless situation with the only difference being that we use the
propagator (63) and the table integral (Gradshteyn and Ryzhik, 1965):∫ ∞

0

dx

x
sin
(
p
√

x2− u2
) = π

2
2−pu. (69)

Using this integral we get that the potential generated by the massive
photons is

V(x− x′, m2) = 1

c

1

4π

exp
{−mcn

h |x− x′|}
|x− x′| . (70)

If we compare the potentials concerning massive and massless photons, we
can deduce thaťCerenkov radiation with massive photons can also be generated.
So, the determination of thěCerenkov effect with massive photons is physically
meaningful.

In case of the massive electromagnetic field in the medium, the actionW is
given by the following formula:

W = 1

2c2

∫
(dx)(dx′)Jµ(x)D+µν(x − x′, m2)Jν(x′), (71)

where

Dµν
+ =

µ

c
[gµν + (1− n−2)ηµην ]D+(x − x′, m2), (72)

whereηµ ≡ (1, 0), Jµ ≡ (c%, J) is the conserved current,µ is the magnetic per-
meability of the medium,ε is the dielectric constant of the medium, andn = √εµ
is the index of refraction of the medium.

The probability of the persistence of vacuum follows from the vacuum am-
plitude (2) in the following form:

|〈0+ | 0−〉|2 = e−
2
h Im W, (73)
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where ImW is the basis for the definition of the spectral functionP(ω, t):

−2

h
Im W

d= −
∫

dt dω
P(ω, t)

hω
. (74)

Now, if we insert Eq. (72) into Eq. (71), we get after extractingP(ω, t) the
following general expression for this spectral function:

P(ω, t) = − ω

4π2

µ

n2

∫
dx dx′ dt′

sin
[

n2ω2

c2 − m2c2

h2

]1/2|x− x′|
|x− x′|


× cos[ω(t − t ′)][%(x, t)%(x′, t ′)− n2

c2
J(x, t) · J(x′, t ′)]. (75)

Now, let us apply the formula (75) in order to get theČerenkov distribution
of massive photons. ThěCerenkov radiation is produced by charged particle of
chargeQ moving at a constant velocityv. Thus, we can write the charge density
and the current density as

% = Qδ(x− vt), J = Qvδ(x− vt). (76)

After insertion of Eq. (76) into Eq. (75), we get (v = |v|)

P(ω, t) = Q2

4π2

vµω

c2

(
1− 1

n2β2

)

×
∫ ∞
∞

dτ

τ
sin

([
n2ω2

c2
− m2c2

h2

]1/2

vτ

)
cosωτ, (77)

where we have putτ = t ′ − t, β = v/c.
For P(ω, t), the situation leads to evaluation of theτ -integral. For this integral

we have∫ ∞
−∞

dτ

τ
sin

([
n2ω2

c2
− c2

m2

]1/2

vτ

)
cosωτ =

{
π, 0 < m2 < ω2

c2v2 (n2β2− 1)

0, m2 > w2

c2v2 (n2β2− 1).

(78)

From Eq. (78) it immediately follows thatm2 > 0 implies that thěCerenkov
thresholdnβ > 1. From Eqs. (77) and (78) we get the spectral formula of the
Čerenkov radiation of massive photons in the form

P(ω, t) = Q2

4π

vωµ

c2

(
1− 1

n2β2

)
(79)

for

ω >
mcv

h

1√
n2β2− 1

> 0, (80)
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andP(ω, t) = 0 for

ω <
mcv

h

1√
n2β2− 1

. (81)

Using the dispersion law (61) we can write the power spectrumP(ω) as a
function dependent onk2. Then,

P(k2) = Q2

4π

vµ

nc

√
k2+ m2c2

h2

(
1− 1

n2β2

)
, k2 >

m2c2

h2

1

n2β2− 1
(82)

andP(ω, t) = 0 for k2 < (m2c2/h2)(n2β2− 1)−1.
The most simple way of how to get the angle2 between vectorsk andp is

the use of the conservation laws for energy and momentum.

E − hω = E′, (83)

p− hk = p′, (84)

whereE and E′ are energies of a moving particle before and after the emission
of a photon with energyhω and momentumhk, andp andp′ are momenta of the
particle before and after the emission of the same photon.

If we raise Eqs. (83) and (84) to the second power and take the difference of
these quadratic equations, we can extract the cos2 in the form

cos2 = 1

nβ

(
1+ m2c2

h2k2

)1/2

+ hk

2p

(
1− 1

n2

)
− m2c2

2n2 phk
, (85)

which has the correct massless limit. The massless limit also gives the sense of
the parametern which is introduced in the massive situation. We also observe that
while in the massless situation the angle of emission depends only onnβ, and
in case of massive situation it also depends on the wave vectork. It means that
the emission of the massive photons are emitted by theČerenkov mechanism in
all space directions. So, in the experiment theČerenkov production of massive
photons can be strictly distinguished from theČerenkov production of massless
photons or from the hard production of spin 1 massive particles.

5. DISCUSSION

The distribution of massive photons generated by theČerenkov radiation is
derived here, to our knowledge, in the framework of the source theory for the first
time and there is no conventional derivation of this effect in QED. As this effect
was not discussed in physical literature, we fill up the gap by this paper.

The velocity of the charged projectile which generates the masslessČerenkov
radiation can be considered constant during the process of radiation because the
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energy loss due to radiative process is small. However, in case of massiveČerenkov
effect the energy loss of the projectile may be large, which means the projectile is
strongly deccelerated. It means the duration of the generation of massive photons
is very short. The velocity can be considered constant only in the case of a very
energetical and heavy charged projectile.

From the theoretical point of view, we used the massive electrodynamics
which is only the generalization of the massless electrodynamics. So, our deriva-
tion of the Čerenkov radiation of massive photons can also be considered as a
generalization of the situation with the massless photons.

The theory of thěCerenkov radiation of massive photons concerns the photons
not only in superconductive medium but also in plasma medium in electron gas
and ionosphere medium or photons in waveguides. The possibility of the existence
of the massive photons in neutron stars is discussed by Voskresenskyet al.(1998).
The bosonsW± and Z0 are also massive and it means that the generalization of
our approach to the situation in the standard model is evidently feasible. Similarly,
the generation of vector mesons,ρ , ϕ, J/ψ by theČerenkov mechanism may be
possible. Probably, they can be generated in a such nuclear medium where they
play role of mediators of nuclear forces.

In the experiment thěCerenkov effect with massive photons can be strongly
distinguished from the classical effect because the emission of massive photons is
distributed in all space directions.

We hope that with regard to the situation in physics of superconductivity,
plasma physics, physics of ionosphere, waveguide physics, particle physics, where
massive photons are present, sooner or laterČerenkov effect with massive photons
will be observed and the theory presented in our paper will be confirmed.
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Pardy, M. (1994b). The graitationalČerenkov radiation with radiative corrections.Physics Letters B

336, 362.
Pardy, M. (1995). The finite-temperature gravitationalČerenkov radiation.International Journal of
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